A network of resistances is formed as shown in Fig.14. Compute the resistance between the points A and B.
Fig. 14(a)
The star connection by the resistors \(3\ \mathrm{\Omega}\),\(4\ \mathrm{\Omega}\) and\(6\ \mathrm{\Omega}\) is converted to delta connection, we have by the redraw of Fig. 14
\(R_1=\frac{6\times3+3\times4+4\times6}{3}=18\ \mathrm{\Omega}\)
\(R_2=\frac{6\times3+3\times4+4\times6}{4}=13.5\ \mathrm{\Omega}\)
\(R_3=\frac{6\times3+3\times4+4\times6}{6}=9\ \mathrm{\Omega}\)
Fig. 14(b)
Fig. 14(c)
\(R_4=\frac{9\times18}{9+18}=6\ \mathrm{\Omega}\)
\(R_4=\frac{1\times13.5}{1+13.5}=0.93\ \mathrm{\Omega}\)
\(R_4=\frac{9\times1}{9+1}=0.9\ \mathrm{\Omega}\)
Hence the resistance between terminals A and B is \(6\ \mathrm{\Omega}\)
Draw a mathematical expression for RMS value of a sinusoidal voltage \(v=V_{m}\sin{{\omega t}}\).
Determine the value R in Fig. 15(a) such that 4 Ω resistor consumes maximum power.
Fig. 15(a)
Derive an expression for lifting power of a magnet
"FM and PM are different but inseparable." – Justify the statement.
Draw and explain the square – law modulator.
State and prove maximum power transfer theorem
State Ampere’s Circular law.