In a certain current transformer, the following data is obtained. Nominal ratio = 25/5A, Turn ratio = 3, primary terns = 40, secondary turns = 120, secondary resistance = 0⋅16z, secondary reactance = 0⋅195Ω, secondary burden = 15 VA, Burden power factor = 0⋅7, secondary terminal voltage = 3V.
Find ratio & phase angle errors. The magnetising and loss ampere turns corresponding to an emf of 4⋅26V are13 & 10⋅1 respectively.
Secondary burden=15VA, secondary winding current=5A=\(I_s\)
Secondary circuit impedance =\(\frac{15}{5^2}=0.6\Omega\)
Secondary circuit reactance=\(0.195\Omega\)
Phase angle of secondary circuit \(\delta=\sin^{-1}{\left(\frac{0.195}{0.6}\right)=0.325}\)
\(\therefore\sin{\delta=0.00567,\ \cos{\delta}}=0.9999\)
Primary turns=40=\(N_P\) , secondary turns =120=\(N_S\)
Turns ratio,n=\(\frac{N_S}{N_P}=\frac{120}{40}=3\), Nominal ratio=\(K_n=\frac{25}{5}=5\)
Magnetizing current \(I_m=\frac{magnetizing\ mmf}{primary\ winding\ turns}=\frac{13}{40}=0.325\)
Loss component \(I_e=\frac{excitation\ for\ loss}{primary\ winding\ turns}=\frac{10.1}{40}=0.2525\)
Actual ratio \(R=n+\frac{I_e\cos{\delta}+I_m\sin{\delta}}{I_s}=3+\frac{0.2525\ast0.9999+0.325\ast0.0567}{5}\)
\(=3+\frac{0.2524+0.001848}{5}=3.0508\)
Ratio error =\(\frac{nominal\ ratio-actual\ ratio}{actual\ ratio}\ast100=\frac{5-3.0508}{3.0508}\ast100=+63.889%\)
Phase angle \(\theta=\frac{180}{\pi}\left[\frac{I_m\cos{\delta}-I_e\sin{\delta}}{nI_s}\right]=180\left[\frac{0.325\ast0.9999-0.2525\ast0.0056}{3\ast5}\right]\)
\( =180\left[\frac{0.3249675-0.0014316}{15}\right]=3.8824°\)
How can potentiometer be used for
Explain the difference between Dynamometer type wattmeter and induction type wattmeter.
Derive an expression for lifting power of a magnet
What is the function of delay time?
Distinguish between group velocity and phase velocity.