img
Question:
Published on: 3 December, 2024

At t=0, the instantaneous value of a 50 Hz, sinusoidal current is 5 Amp and increases in magnitude further. Its R.M.S value is 10 Amp.

  • Write the expression for its instantaneous value
  • Find the current at t=0.01 and t=0.015 sec.
  • Sketch the waveform indicating this value.
Answer:

The R.M.S value of sinusoidal current is IR.M.S=10 Amp, thus the peak value of current

Imax=√2 ×IR.M.S=10√2 Amp.

At t=0, the instantaneous value of current is i(t=0)=5 Amp.

Therefore the instantaneous value of current can be expressed as

i(t)=i(t=0)+Imax sin⁡ωt

i(t)=5+10√2 sin⁡ωt

i(t)=5+10√2 sin⁡2πft

i(t)=5+10√2 sin⁡2×50πt

i(t)=5+10√2 sin⁡100πt

The current at t=0.01 sec is

i(t=0.01)=5+10√2 sin⁡314×0.01

i(t=0.01)=5+10√2 sin⁡3.14 Amp

i(t=0.01)=5.775 Amp.

The current at t=0.015 sec is

i(t=0.01)=5+10√2 sin⁡314×0.015

i(t=0.01)=5+10√2 sin⁡4.71 Amp

i(t=0.01)=6.16 Amp.

The current waveform of the problem is given below

Fig. 4 waveform of sinusoidal wave with mentioned parametric values.

Random questions