At t=0, the instantaneous value of a 50 Hz, sinusoidal current is 5 Amp and increases in magnitude further. Its R.M.S value is 10 Amp.
The R.M.S value of sinusoidal current is IR.M.S=10 Amp, thus the peak value of current
Imax=√2 ×IR.M.S=10√2 Amp.
At t=0, the instantaneous value of current is i(t=0)=5 Amp.
Therefore the instantaneous value of current can be expressed as
i(t)=i(t=0)+Imax sinωt
i(t)=5+10√2 sinωt
i(t)=5+10√2 sin2πft
i(t)=5+10√2 sin2×50πt
i(t)=5+10√2 sin100πt
The current at t=0.01 sec is
i(t=0.01)=5+10√2 sin314×0.01
i(t=0.01)=5+10√2 sin3.14 Amp
i(t=0.01)=5.775 Amp.
The current at t=0.015 sec is
i(t=0.01)=5+10√2 sin314×0.015
i(t=0.01)=5+10√2 sin4.71 Amp
i(t=0.01)=6.16 Amp.
The current waveform of the problem is given below
Fig. 4 waveform of sinusoidal wave with mentioned parametric values.
Determine the value R in Fig. 15(a) such that 4 Ω resistor consumes maximum power.
Fig. 15(a)